Incorporating Dynamic Uncertainties into a Fuzzy Classifier
نویسندگان
چکیده
Dealing with classification problems in practice often has to cope with uncertain information, either in the training or in the operation phase or both. Modeling these uncertainties allows to enhance the robustness or performance of the classifier. In this paper we focus on the operation phase and present a general, but simple extension to rule based fuzzy classifier to do so. Therefor uncertain features are gradually and dimension wise faded out of the classification process. An artificial two–dimensional dataset is used to visualize the effectiveness of this approach. Investigations on three benchmark datasets shows the performance and gain in robustness.
منابع مشابه
A NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کاملAssessing Circuit Breaker’s Electrical Contact Condition through Dynamic Resistance Signature Using Fuzzy Classifier
Circuit Breakers (CBs) are critical components in power system for reliability and protection. To assure their accurate performance, a comprehensive condition assessment is of an imminent importance. Based on dynamic resistance measurement (DRM), this paper discusses a simple yet effective fuzzy approach for evaluating CB’s electrical contacts condition. According to 300 test results obta...
متن کاملA Rough Set Based Fuzzy Inference System for Mining Temporal Medical Databases
The main objective of this research work is to construct a Fuzzy Temporal Rule Based Classifier that uses fuzzy rough set and temporal logic in order to mine temporal patterns in medical databases. The lower approximation concepts and fuzzy decision table with the fuzzy features are used to obtain fuzzy decision classes for building the classifier. The goals are pre-processing for feature selec...
متن کاملDesign of a Traffic Junction Controller Using Classifier Systems and Fuzzy Logic
Traffic control in laige cities is a difficult and non-trivial optimization problem. Most of the automated urban traffic control systems aie based on deterministic algorithms and have a multi-level architecture; to achieve global optimality, hierarchical control algorithms are generally employed. However, these algorithms are often slow to react to varying conditions, and it has been recognized...
متن کاملVoltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm
A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...
متن کامل